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Abstract

The state of fibres suspended in a turbulent fluid is described in terms of a probability distribution
function of fibre orientation and position throughout the suspending fluid. The evolution of the fibre’s
probability distribution function is governed by a convection—dispersion equation, where the randomizing
effect of the turbulence is modelled by rotational and translational dispersion coefficients. To estimate these
coefficients a numerical simulation of fibres moving in a turbulent fluid was developed. The trajectory of an
ensemble of inertialess, rigid, thin, free-draining fibres was calculated through a stochastic model of ho-
mogeneous, isotropic turbulence. The results of the simulation were compared with analytical estimates and
were found to provide reasonable agreement over a wide range of fibre length. However, the simulation
showed that the Lagrangian integral time scale for rotation was significantly smaller than for translation
and the ratio of rotational to translational Lagrangian time scales was smaller than the ratio of Eulerian
time scales. The simulation also showed that the Lagrangian velocity correlation increased as fibre length
increased and that the temporal correlations approached the analytical estimates of the Eulerian correla-
tions in the limit of long fibres. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The behaviour of fibres in a turbulent flow affects the transport, rheology and light scattering
properties of suspensions that are of interest in many areas of science and industry. Turbulent
fibre suspensions are of particular interest in the pulp and paper industry, where nearly all fibre
processing and papermaking is performed at high speeds in turbulent fluids. The complexity of
turbulent fibre suspension has limited the application of advanced engineering techniques, for
example computational fluid dynamics, to the design and optimization of the various unit op-
erations and processes, resulting in lower product quality and productivity. Application of these
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techniques requires the development of a physical model of turbulent fibre suspension that can be
implemented into predictive, computational tools.

The most common method of investigating fibre motion in flow is the Lagrangian approach,
where the trajectory of individual fibres is determined by integrating the equations of motion
through a known fluid velocity field. The other method is an Eulerian approach where fibre
orientation and concentration distribution are calculated through the entire flow field simulta-
neously by considering the flux of particle centres and orientations. Although both approaches
have separate strengths and are often complimentary, the Eulerian technique has several ad-
vantages, in that, it is more computationally efficient, naturally accounts for turbulent dispersion
and most importantly has the potential to account for the interactions of the fibre on the fluid
flow, i.e., can provide two-way coupling of the particle motion and flow.

In pulping and papermaking, fibre length is the most important property affecting the fibre’s
behaviour. Wood pulp suspension have a fibre length distribution that spans two orders of
magnitude, from 0.05 to 5 mm, and for many applications, such as near wall flow or in the free jet
of the forming section, fibre length is often larger than the turbulent length scale of the sur-
rounding fluid. The effect of fibre length on the translation and orientation dispersion of fibres was
first examined by Olson and Kerekes (1998). This theoretical study showed that both orientation
and translational dispersion are reduced as fibre length increases due to averaging of eddy in-
teractions along the fibre length. Although insightful, their study made a number of necessary,
simplifying assumptions, for example, the Lagrangian statistics were assumed to be the same form
as the Eulerian statistics, the longitudinal and transverse velocity correlations were made equiv-
alent despite violating the continuity condition, and the Lagrangian integral time scales of fibre
motion were assumed to be independent of fibre length. Clearly, these simplifications bring into
question the application of analytic estimates of dispersion in predictive computational methods.

This work describes a numerical simulation of a single, thin, inertialess and rigid fibre moving
in a stochastic turbulent velocity field described by the Kraichnan energy spectrum to study
translational and rotational dispersion. The force on the fibre is modelled assuming a “free-
draining” fibre and the motion of the fibre is calculated assuming a one-way coupling between the
fibre and the fluid, i.e., the fibre does not influence the turbulent fluid. The simulation overcomes
some of the shortcomings of the analytic expressions for dispersion mentioned previously, al-
though is not without its own limitations. The results of the simulation are then compared with
and interpreted in terms of the analytical expressions for dispersion derived by Olson and Kerekes
(1998).

2. Background

Fibres in a turbulent fluid undergo mean and random motion and that motion is a combination
of translation and rotation. In an Eulerian description of a fibre suspension, the position r and
orientation p of the fibers at time ¢ is denoted by a probability distribution function ¥(r, p,t). The
evolution of ¥ is given by the following convection—dispersion equation

12
wy = DVIY = Ve (QU) £ DV -V - (V), (1)
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where the terms on the right-hand side are the rotational dispersion, mean rotation, translational
dispersion and mean translation, respectively Doi and Chen, 1989. Here, V, is the rotational
operator, similar to the angular momentum operator in quantum mechanics, and is expressed as

0
V, = —. 2
Px3, (2)
The fibre’s angular velocity, £2, is related to the fibres rotational vector by the following:
Q=pxp. (3)

To apply Eq. (1), expressions need to be developed that link the rotational dispersion coefficient,
D, and the translational dispersion coefficient, D, to the properties of the turbulence. Olson and
Kerekes (1998) derived the following approximate expressions for the translational and rotational
dispersion coefficients assuming a free-draining, inertialess, rigid fibre of length L moving in a
homogeneous, isotropic turbulent fluid,
22 d [t [F
D, = <Lz> & /0 /0 (t—1)(L—DR(l,7)dldz 4)

- 24L<§‘2> % /0 /OL(z— 7) (1 - 3£+2<£)3>9?(17r)d1dn (5)

where 2(1, t) is the Lagrangian fibre velocity correlation and (u?) is the turbulent intensity. In the
analysis of Olson and Kerekes, #(/,7) was approximated as the product of the fluids Eulerian
spatial velocity correlation and the Lagrangian velocity correlation of the fluid. The velocity
correlation of the fibre was shown to equal the the Lagrangian velocity correlation of the fluid for
short fibres and was hypothesized to be equal to the Eulerian velocity correlation of the fluid for
infinitely long fibres.

In this study, a numerical simulation of individual fibres moving in a random velocity field is
used to develop approximate relations between the Lagrangian fibre correlations required by the
translational and rotational dispersion coefficients, Eqgs. (4) and (5), and a specified Eulerian fluid
velocity correlations. Specifically, the Eulerian fluid correlations correspond to the Kraichnan
energy spectrum and are not general to other spectra, however, the approach is general and could
be applied to other model spectra.

and

Dx

3. Numerical simulation

In this section, the equations of motion for a rigid, infinitely thin fibre of arbitrary length are
derived, as well, the model for the turbulent velocity field is described. These two models are then
combined in a “one-way coupling” (McLaughlin, 1994), such that the fibre is assumed not to
significantly affect the turbulent velocity field. Of course, real fibre suspensions can significantly
affect the turbulent velocity field, especially at high concentrations where it is expected that the
small scales of turbulence would be quickly dissipated. Therefore, this simplification assumes a
dilute fibre suspension. Modelling the suspension using “two-way coupling’ is complex and has
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not been completely successfully. The complexity of the interactions between the particles and
the fluid turbulence is illustrated in the experimental studies performed by Gore and Crowe
(1989).

Fibre trajectory is calculated using the standard ODEPACK routines for ordinary differential
equations (INRIA, 1999). These routine automatically select between the non-stiff predictor—
corrector Adams method and stiff backward differentiation formula (BDF) method. It uses the
non-stiff method initially and dynamically monitors data in order to decide which method to use.
The simulation calculates a relatively large number of individual fibre trajectories, typically 1000,
from which the necessary Lagrangian statistics are gathered.

3.1. Fibre motion

The derivation of the equations of fibre motion in a turbulent flow requires a model of the force
imposed on the fibre by the fluid. Unfortunately, there is no slender body theory that is strictly
valid for the high Reynold’s number, turbulent flow of interest here. As a necessary simplification,
the form of the force on the fibre under creeping flow conditions, derived by Cox (1970) given by
Eq. (6), is assumed to be retained for higher Reynold’s number flows

f (1) = Dlu(l) = v(1)]. (6)

For straight rigid infinitely thin fibres D is independent of position along the fibre, /, and is given
by

_ Anpulpp — 21|

D
In x

: (7)
where « is the aspect ratio of the fibres (assumed to be large). However, Eq. (6) was derived for a
small Reynold’s number flow where Reynold’s number is based on fibre length, L. Therefore,
Eq. (6) is only strictly valid for infinitely thin fibres with L less than the Kolmogorov length scale,
n, of the turbulence. Eq. (6) is applied to longer fibres suspended in turbulent flow, by imposing
the free-draining approximation used to model flexible fibre motion (Ross and Klingenberg,
1997), and to model polymer dynamics (Doi and Chen, 1989; Doi and Edwards, 1988). Hence, the
fibre is considered to be composed of a series of elements 4; long, where 4; < 5, and each element
is assumed to be hydrodynamically independent. In this model of a fibre, each element meets the
necessary conditions for Eq. (6) to be valid, and assuming hydrodynamic independence of each
element allows Eq. (6) to be applied to all elements, thus applied to the entire fibre. The lack of an
accurate model of force on a long fibre in high Reynolds number flow (Re > 1) and the necessity
of imposing the free-draining approximation limits the quantitative predictability of Eq. (6) for
long fibres. The results have to be interpreted in light of this and other approximations made in
this paper.

Assuming a straight rigid fibre, the velocity at any point along the fibre will be the sum of the
fibres translational velocity, v, and rotational velocity, /p, where p is the time derivative of a unit
vector parallel to the fibre’s major axis, and / is the distance from the fibre centre (see Fig. 1). The
net external force, F, on the particle is obtained by integrating Eq. (6) along the length of the fibre,
given by
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Fig. 1. A straight rigid fibre of length L, moving with velocity v, in a turbulent fluid with velocity #. The fibre is pointing
in the direction given by unit vector p.

L2
F = Dlu(l) — (v + Ip)]dl. (8)
-L)2
The net external moment acting on the fibre is similarly given by
L2
M = Ip; x Dlu(l) — (v + Ip)]dl. 9)
-L/2
Assuming the fibre is neutrally buoyant, and inertial forces are negligible in generating relative
velocities between the particle and fluid results in F = 0 and M = 0. For this condition,

1 L/2
v:—/ u(y+Ip,t)dl (10)
L) 1p
and
12 L/2
Q=px— lu(y + Ip,t)dl, (11)
L J i)

where €2 is the angular velocity of the fibre. The equations for the mean velocity required in
Eq. (1) are also given by Eqgs. (10) and (11), if the mean fluid velocity is substituted for u. The rate
of change of orientation, p, is then calculated as

p=2xp. (12)

Egs. (10)-(12) can be numerically integrated to provide the trajectory of the fibre through the
fluid. These equations for fibre motion have been used to model a fibre moving in non-homo-
geneous flow, i.e., non-linear shear, by several investigators: Riese et al. (1969), Shanker et al.
(1991), Pittman and Kasiri (1992), Tangsaghasaksri (1994) and Olson (1996).

To simplify the calculation, the orientation is expressed in terms of its orientation angles, 6 and
¢, where

cos ¢ sin
p=|sin¢gsind (13)
cos 0
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with corresponding unit vectors given by

R cos ¢ cos b R —sin¢
0= | sin¢cosh and ¢ = | cos¢
—sin @ 0

The orientational velocity is then

p = ¢sin ¢ + 00. (14)
The angular velocity of the fibre is given by the following differential equations:
) 12 Lz
= lo - Ip,t)dl 15
(;5 L3 Sil’l@ 7L/2 ¢ ll(y—|— p7 ) ) ( )
and
.12 L2,
HZE 10 -u(y+ Ip,t)dl. (16)
-L)2

In this study Egs. (10), (15) and (16) are numerically integrated through a specified fluid velocity
field, u(x, 1), to determine the fibre’s trajectory.

3.2. Turbulent velocity field

The turbulent fluid velocity, u(x, ), has been modelled by many investigators studying particle
dispersion as a stochastic series of independent Fourier modes. Following these researches u(x, t)
is given as

N
u(x, 1) = A" sin(k"x + 0”t) + B" cos(k" x + 0"1). (17)

n=1

The coefficients A" and B!" are random velocity given by

AL
(n) (n) 18
é ’k(n)| ) ( )
and
kM
B(n) — (”) X , 19
0 (19)
to ensure incompressibility
V-u(x,t) =0. (20)

The components of each random coefficients éf") and C,@ are chosen from a Gaussian random
distribution with zero mean and standard deviation 3uy/(2N)"*.

Each wave vector k™ is chosen to be uniformly distributed over the surface of a sphere of
radius £
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/“)E(k)dk:%“_ziw, (21)
where
E(R) = 162/m)" "0 exp(~2(k/ko)?). (22)

0

This ensures that the resulting energy spectrum is the Kraichnan energy spectrum, which is
representative of low Reynolds number turbulence behind a grid (Hinze, 1975). The energy
spectrum is a maximum at k = ky. The corresponding longitudinal and transverse velocity cor-
relations are given by

1) =exp (=51). (23)

dir= (175 ) exp (28 "

To model higher Reynolds number turbulence others have used the same approach with different
energy spectra, for example, the von Kdrmédn—Pao spectrum (Wang and Stock, 1994).

The frequencies ™ are also chosen from a Gaussian distribution with zero mean and standard
deviation wy = augk™, where u, is the rms velocity of the fluctuating component of the fluid
velocity. The resulting energy spectrum is given by

&k, ) = E(k) exp ( - 2(@)42) / ((2m) P akuy), (25)

akuy)®

which shows good agreement with the direct numerical simulation of Hunt et al. (1987) for
a = 0.40.

This stochastic approach to modelling isotropic homogeneous turbulence has been used by
several investigators to study particle dispersion because of its ability to reproduce the required
two-point Eulerian statistics while predicting many features of the Lagrangian statistics. Kra-
ichnan (1970) was the first to use this technique as a statistical test of the direct-interaction ap-
proximation of turbulent self-diffusion. Maxey (1987) used Kraichnan’s method to study the
settling velocity of small spherical particles with and without inertia. Here, each wave vector
component was independently chosen from a Gaussian distribution and the temporal frequencies
were chosen from an independent Gaussian distribution with a characteristic frequency w, that
was independent of k. They modelled the force imposed on the particle by the fluid, assuming a
Stokes drag and examined particle dispersion for varying w,. Maxey also points out some of the
shortcoming of this stochastic model of turbulence: there is no representation of the energy
transfer between large and small eddies, no advection of small eddies by larger eddies and the
triple correlations of velocity vanish. This brings into question the quantitative prediction of this
model, however, the qualitative predictions and insight have been valuable in many of the fol-
lowing studies.

Wang and Stock (1992) used the same model as Maxey to examine the effect of non-linear drag
on the dispersion of small particles. In another study, Wang and Stock (1994) modified the
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turbulence model to account for the effect of turbulence decay in the wake of a grid by incor-
porating time varying u, and wy. These studies used both the Kraichnan energy spectrum to model
low Reynolds number turbulence and the von Karman-Pao energy spectrum to model higher
Reynolds number turbulence. Furthermore, both turbulence models were shown to provide ex-
cellent agreement with the experimental measurements of particle dispersion in grid-generated
turbulence performed by Snyder and Lumley (1971). Similarly, Mei (1994) used this technique to
examine the effect of non-linear drag on particle settling time. Spelt and Biesheuvel (1997) used the
same model of turbulence as this study to examine the motion of small bubbles in isotropic
turbulence.

Fung et al. (1992) further modified the turbulence model to account for the advection of small
eddies by larger eddies and used this model to study the relations between the Eulerian and
Lagrangian structures of turbulence. In addition, they provide a good discussion of the appli-
cability of these models to true flows based on dimensional scaling arguments. Fung et al. point
out that the advection of small eddies by larger eddies can also be accounted for by coupling this
approach with techniques such as large-eddy simulation. In a subsequent study, Fung (1993) used
this extended turbulence model to predict the gravitational settling of small particles (Fung, 1993).

Recently, Newson and Bruce (1998) used a similar stochastic representation of turbulence to
model the orientation of small fibres settling in atmospheric turbulence. The results of the sim-
ulation were compared to experimental measurements of mean orientation determined using
millimeter wave depolarization techniques. Unfortunately, this study only looked at the mean
orientation of the fibres during settling and did not consider the general problem of fibre dis-
persion of interest to this study.

4. Results

For each fibre length, k,L equal to 0.25, 1.0, 3, 5, 7, 10 and 20, 1000 trajectories were calculated,
each through a newly generated realization of the random flow field. For all simulations the
number of Fourier modes, N, was equal to 100. From the ensemble of fibre trajectories the re-
quired fibre and fluid velocity correlations were calculated.

The turbulent fluid velocity is defined by setting two parameters: ky = 1.0 and ug = 1.0. As-
suming the von Karman energy spectrum, the maximum energy containing wave vector corre-
sponds to k =k, and the range of length scales is approximately 0.25 < k/ky < 2. The
corresponding Kolmogorov scale for such turbulence is approximately given by (2k0)_1. Fur-
thermore, all the analyses presented in this section are made by assuming that the turbulence is
well represented by a von Karman spectrum.

4.1. Fluid statistics

The Eulerian longitudinal and transverse fluid velocity correlations were calculated from the
numerical simulation and are given in Fig. 2 and compared with the exact correlations given by
Egs. (23) and (24). The results of averaging over 1000 realization compares well with the analytic
solution and demonstrates the ability and accuracy of the numerical method to converge to the
exact Eulerian correlations.
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Fig. 2. The Eulerian transverse and longitudinal velocity correlation of the fluid model as determined by the simulation
(points) and the exact correlations (lines).

In Fig. 3, the Eulerian temporal velocity correlation was also calculated and compared to the
exact solution given by
0 32
wlito___2__ (26)
(4 + w5T?)

where the average Eulerian frequency is given by wy = akouy.

The Lagrangian fluid velocity correlation was similarly determined by calculating the trajectory
of fluid elements through the turbulent velocity field by directly integrating Eq. (17). The
Lagrangian temporal correlation was then compared to Eq. (26) for a best-fit value of wy = 1.0
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Fig. 3. The Eulerian and Lagrangian temporal velocity correlation of the fluid as determined by the simulation (points)
and the exact expression for the Eulerian velocity (line).
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in Fig. 3. For this turbulence model, the form of the Lagrangian velocity correlation is similar to
the form of the Eulerian correlation, with the ratio of Eulerian to Lagrangian values of w, ap-
proximately equal to 0.4.

4.2. Fibre statistics

4.2.1. Translational dispersion .
All fibre trajectories have initial conditions of p =1, y =0 at ¢t = 0. The fibre translation is
given by integrating Eq. (10), i.e.

() = /0 (1) dr. (27)

The mean square translation of the fibres, (?) as a function of time is given in Fig. 4 for all fibre
lengths. The fibres initially disperse slowly corresponding to the velocity being initially strongly
correlated with time, and after several eddy interactions disperse linearly with time. This trend is
similar for all fibre lengths examined. Fibres shorter than the smallest scales of turbulence disperse
at the same rate as the fluid particles, which corresponds with the assumption of an inertialess
fibre. As fibre length increases the rate of translational dispersion decreases. The decrease in
dispersion is due to a decreased magnitude of fibre velocity fluctuations caused by averaging of the
turbulent fluctuations over the length of the fibre.

The translational dispersion coefficient that characterizes turbulent motion in Eq. (1) is cal-
culated from the mean square translation of fibres originating from a point source (Hinze, 1975)
from the following relation:

_1dp?)
6 dr

The translational dispersion coefficient was calculated for all fibre lengths from the mean square
translation using Eq. (28) and plotted in Fig. 5. As expected the dispersion coefficient is initially

D, (28)
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Fig. 4. The mean square translation of fibres, (y?).
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Fig. 5. Translational dispersion coefficient.

zero and increases quickly to a constant value, D{°, the long-time, translational dispersion coef-
ficient. The time it takes to reach this steady-state value corresponds to the time required for the
translation to be uncorrelated and is therefore approximately equal to twice the Lagrangian in-
tegral time scale, which is approximately ¢ > 2.5/uk, for shorter fibres. The dispersion coefficient
of the smallest fibres (koL < 1.0), which undergo the largest amount of dispersion, have the largest
error in the calculation due to the finite number of trajectories calculated, especially when taking
the derivative of the correlation. However, within error the dispersion coefficient is approximately
constant, as expected, and a good estimate of D* can be made. For the longest fibres, the dis-
persion coefficient is still slowly increasing and does not reach its constant value until later times.

Of most interest to the application of numerical simulations of turbulent fibre suspensions is

the long-time dispersion coefficient, D, which is estimated from the asymptotic value of the

(ko/ug) D™

0.0 L L L
0 5 10 15 20

koL

Fig. 6. Long-time translational dispersion coefficient.
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calculated D, shown in Fig. 5. The calculated values of D{* are given in Fig. 6. Here again, the
decreasing dispersion with increasing fibre length is evident.

The analytic estimate of D derived by Olson and Kerekes (1998), who assumed that the spatial
statistics of the fibre velocity correlation are independent of the temporal statistics, is given by the
following:

2u? L

Dr="tr, / (L— Da(l)dl, (29)
where T; is the integral time scale of the Lagrangian fibre velocity correlation. For short fibres, i.e.,
L =0,T equals the integral time scale of Lagrangian fluid velocity correlation and it was hy-
pothesized that for long fibres, i.e., L — oo, T; equals the Eulerian fluid velocity correlation. To
calculate D, Olson and Kerekes (1998) approximated 7; by the integral time scale of the fluids
Lagrangian velocity correlation and approximated #(/) by the Eulerian longitudinal and lateral
velocity correlations, f(/) and g(/). The fibres spatial velocity correlation, #(/) is expected to be
bracketed by the two correlations f(/) and g(/), since translation may be due to fluid velocity in
the direction of, or perpendicular to the direction of the fibre, depending on fibre orientation. The
value of D estimated from the simulation and calculated from Eq. (29) is given in Fig. 6. From
Fig. 6 it is evident that Eq. (29) underestimates the simulated dispersion coefficient for both
approximations of the spatial correlations f(/) and g(/) if a constant integral time scale is as-
sumed.

To examine the effect of fibre length on the integral time scale, the fibre’s temporal velocity
correlation is estimated from the simulation and plotted in Fig. 7. The fibre’s temporal velocity
correlation is defined as (v(0)v(¢))/(v*). The solid lines are the fluid’s Lagrangian and Eulerian
velocity correlations. As hypothesized, the fibres Lagrangian velocity correlations initially equals
the fluids Lagrangian correlation for the shortest fibres (L — 0) and approaches the Eulerian
velocity correlation as fibre length increases.

From the velocity correlation, the integral time scale is estimated by numerically determining
the best-fit value of wy to Eq. (26) and then integrating Eq. (26) to calculate 7;. This necessarily

1.2
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Fig. 7. The translational velocity correlation.
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Fig. 8. The fibre Lagrangian integral time scale.

assumes that Eq. (26) provides the proper form for the Lagrangian statistics, which turns out to be
a good approximation. The integral time scale for each fibre length is plotted in Fig. 8. The
increase in integral time scale with increasing fibre length is approximately linear initially and
asymptotically approaches the Eulerian integral time scale as fibre length becomes large. Note
that the fluids Eulerian integral time scale is equal to 4/3(0.4)kouy = 3.33kouo and the fluids La-
grangian integral time scale is determined to be approximately 1.31kyuo. To accurately model the
length dependence on dispersion the effect of increasing Lagrangian integral time scale with fibre
length must be taken into account.

The increase in fibre Lagrangian time scale from the fluids Lagrangian time scale to the
Eulerian time scale as fibre length increases is similar to that observed and predicted for heavy
particles in turbulent flow. The increase in integral time scale for increasing inertia is sometimes
referred to as the the crossing-trajectory effect (Reeks, 1977; Pismen and Nir, 1978). As inertia
increases the particle experiences near-Eulerian velocity statistics as the particle’s translation
becomes less effected by the fluid’s fluctuating velocity.

4.2.2. Rotational dispersion

From the ensemble of fibre trajectories, the orientation correlation is calculated as
{(p(0)p(2))/{p*) and given in Fig. 9 for all fibre lengths. From this figure, it is evident that short
fibres are completely randomized after approximately 4/kou, and that longer fibres require more
time to disperse, with the longest fibres remaining strongly correlated beyond 8 /uyky. The decrease
in dispersion with increasing fibre length is due to the decrease in angular velocity fluctuations
caused by averaging fluid fluctuations along the length of the fibre and is similar to the observed
decrease in translational dispersion.

The rotational dispersion coefficient that characterizes the turbulent rotation in Eq. (1) is
calculated from the mean rotational dispersion using the following relation (See Appendix A):

D, = -2 [ ip0)p(0)). (30)
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Fig. 10. The rotational dispersion coefficient for all fibre lengths.

The rotational dispersion coefficient is plotted as a function of time in Fig. 10. As with transla-
tional dispersion, the rotational dispersion coefficient is initially zero and increases until it reaches
a maximum value, where after it remains constant. This constant value is the long-time rotational
dispersion coefficient, denoted by D?°. The value of D is calculated from the asymptotic value of
D, and is plotted in Fig. 11. The figure demonstrates the strong dependence of fibre length on
rotational dispersion.

Accurately determining D from Eq. (30) is difficult because the fibre orientation correlation is
nearly zero for short fibres before the dispersion coefficient reaches a constant value, therefore
estimates of D° are made from relatively noisy statistics. The reported error-bars represent 95%
confidence limits, estimated from the variance of D, near the region of constant value.
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Fig. 11. The long-time rotational dispersion coefficient.

The approximate analytical expression for D derived by Olson and Kerekes (1998) is given by

o 24T, [* 31 AW
D=3 !A <l_ii+2<z) R(1)dl. (31)

To relate this expression to the available Eulerian statistics, the correlation #(/) was approxi-
mated as the Eulerian lateral velocity correlation, g(/), since rotation is due entirely to the
component of fluid velocity perpendicular to the fibre. This approximation also assumes the
turbulence is ergodic in the sense that integrating along the length of an ensemble of fibres is
equivalent to integrating along an arbitrary line in the flow. The relevant integral time scale T}, is
the integral time scale of the angular velocity

[ eoew)
E_A o 4 (32)

where 2 = p x p.

Before calculating 7, and subsequently D°, it is necessary to discuss the angular velocity cor-
relation in some detail. First, an analytic approximation of the the Eulerian angular velocity
correlation is derived, where Eulerian refers to short fibres that do not rotate significantly before
the angular velocity becomes uncorrelated. This is analogous to interpreting the Eulerian velocity
correlation as the velocity correlation of a particle that does not move significantly. The form of
the Eulerian correlation is then used to approximate the form of the Lagrangian correlation, as
was done previously with the translational velocity correlations.

Assuming p is small, such that p is does not change significantly over the integral time scale,
then

(R0)2(2) _ (p(O0)p(e) (33)
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Now, without loss of generality, consider a fibre oriented in the y; direction, then for short fibres
6141
ayz ’

2

- (0 {(5))- 5L L) e

The time dependence of the transverse correlation is then calculated from the energy spectrum
6 (k,w) (Eq. (25)) from the following relationship (Hinze, 1975):

o*g(1,7) /%g(1,0) / /
6[2 6[2 2k01/l0 6[2

(sm (kI) sin(kl)  cos(kl)
X +

p= (34)

thus

ki 313 EYE ) cos(wt)& (k,w)dkdw. (36)

Integrating and taking the limit as / — 0 results in the following expression for the Eulerian
rotational velocity correlation

<Q(O)Q(r)> 12 (37)
(Q%) 4+ 2wd)"?
with the integral time calculated as
n:/ S 2 S L (38)
o (4+2w)? 15 wy

This analysis provides an estimate of the shape and the magnitude of the Eulerian angular velocity
correlation of the fibres. Although derived for short fibre rotation, it is expected that the Eulerian
statistics are valid in the limit of long fibres that do not significantly rotate during the integral time
scale, T;, thus provides an upper bound on the Lagrangian integral time scale. However, it is
reasonable to assume that the form of the Lagrangian statistics for all fibre lengths can be de-
scribed by Eq. (37).

The Lagrangian angular velocity correlation of the fibres was calculated and shown in Fig. 12.
This figure shows that Eq. (37) provides a reasonable estimate of the form and magnitude in the
limit as fibre length increases. The integral time scale was calculated by fitting Eq. (37) to the
velocity correlation calculated from the simulation and using the best-fit value of wy and Eq. (38).
It was found that for short fibres 7; =~ 0.71/(uoko) and in the limit of long fibres 7; =~ 2.6/ (uok).

The long-time rotational dispersion coefficient can now be calculated from the analytical es-
timate, Eq. (31), by setting 7, ~ 0.71/(ugky) and assuming it remains constant. Eq. (31) is then
plotted and compared with the calculated values of D from the simulation. Fig. 11 shows that
the analytical estimate of D° underestimates the calculated values. As with the translational
dispersion, the underestimate is due to the assumption of a constant 7;.

The integral time scale 7, of the fibre velocity was calculated for all fibre lengths using the best-
fit value of wy and Eq. (38) and plotted in Fig. 13. From this figure it is evident that the integral
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Fig. 12. The Lagrangian angular velocity correlation. Solid lines are Eq. (37).
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Fig. 13. The fibre’s Lagrangian angular velocity integral time scale.
time scale increases significantly with fibre length, from the fluid’s Lagrangian correlation for

short fibres to the fluid’s Eulerian correlation for long fibres. This effect must be taken into
account if the effect of fibre length on dispersion is to be accurately modelled.

5. Discussion

In many applications fibre length will be small with respect to the turbulent length scales, i.e. for
L < ky'. For this case the long-time, dispersion coefficients are simply given as

DY ~ i1, (39)
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corresponding to Taylor dispersion of a passive scalar, and

@) uy - Ughy
D~—T=2="T=——T,. 40
r 2 }é’ 2 ( )

From the numerical simulation, the Lagrangian integral time scales of the short fibres was de-
termined to be

1.3
T~ —— 41
' u()ko’ ( )
and
0.7
T~ ——. 42
ok (42)

The value of rotational time scale was significantly smaller than the translational time scale, with
T./T; = 0.5, while the Eulerian analysis of the time scale, valid only in the limit as L — oo,
suggests that

7. 4

775 (43)
The ratio of short-fibre integral time scales estimated from the Eulerian analysis is nearly twice
that estimated from the numerical simulation.

The application of this dispersive model of fibre suspensions to computational fluid dynamics
requires that the two parameters defining the dispersion coefficients be related to the turbulence
model used. If this dispersive model of fibre suspension is to be implemented into a standard xk—e
turbulence model, then it is relatively straight forward to show that for short fibres

52y 2
DX ~ 1.3 44
! < 3e ) (44)
and the length scale is approximated by
4e \ '/
DX ~0.7( — 45
: (1 Sv) , (45)

where v is the kinematic viscosity, k = 3/2u3 is the turbulent kinetic energy and e = 15vu/ /15, is the
dissipation rate. Of course, the analysis presented in this paper is strictly valid only for turbulence
with energy spectra well represented by the Kraichnan energy spectrum. Higher energy turbulence
needs to consider more appropriate energy spectra.

Before being applied to computational fluid dynamic simulations for designing pulp and paper
process equipment, this model needs to be experimentally validated. Future studies will examine
the rotational and translational dispersion of fibres in grid-generated turbulence and in wall-
bounded shear flow. It is the aim of these studies to directly measure the dispersion coefficients as
a function of fibre length. Furthermore, to more accurately model real fibre suspensions the model
needs to be extended to include the interaction of fibre orientation and concentration on the
turbulent fluid, i.e., provide two-way coupling between the fibres and the fluid, account for an-
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1sotropic turbulence and provide boundary conditions appropriate for fibre interactions with solid
boundaries. These problems are to be addressed in future studies.

6. Conclusion

A numerical simulation of ideal fibres moving in a stochastic model of a turbulent fluid was
developed to study the effect of fibre length on dispersion. The results of the simulation were
shown to have similar form and magnitude as the analytical estimates provided by Olson and
Kerekes (1998). However, the simulation showed that the Lagrangian integral time scale for
rotation was significantly smaller than for translation and that the ratio of rotational to trans-
lational Lagrangian time scales was smaller than the ratio of Eulerian time scales. The simulation
also showed that as fibre length increased the analytic estimates of dispersion under predicted the
simulation results and this was due to an increase in the Lagrangian temporal correlation. Fur-
thermore, it was shown that the temporal correlations approached the analytical estimates of the
Eulerian correlations in the limit as fibre length increased.
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Appendix A. Generalized mean fibre dispersion

From Eq. (1), a more general expression for the fibre orientation correlation can be derived.
From Eq. (1), the fibre orientation distribution in isotropic turbulence with no mean shear is
governed by

oY

—=D,V?V. Al
or T (A.1)
The conditional probability of a fibre having orientation p, given that it was in orientation p, at

time ¢ = 0, corresponds to the particular solution of Eq. (A.1) with initial condition

¥(p,t=0)=0d(p—p) (A.2)
The solution of Egs. (A.1) and (A.2) is the fundamental solution, or Green’s function, and is

denoted by G(p,p,,t). From this solution, we calculate (p(¢) - p(0)), which is a measure of the
orientation correlation as

(p(2) - p(0)) =$ /p(t) -p(0)G(p,py, 1) dpdp,. (A.3)

Although, G(p,p,,t) can be solved analytically (Berne and Pecora, 1976), it is not always nec-
essary. Again, following Doi and Edwards (1988), we solve the above by considering the time
derivative of Eq. (A.3), to arrive at a simple ordinary differential equation, i.e.
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% (1) - p(0)) = L/p(t)-1)(0>wdpdpo

47 ot
D, )
= 4 | P10 PO)V.G(p,py, 1) dpdp,
D,
- / 2(p(1) p(0))G(p.po, 1) dp i,
2D
= 0)G(p.po, t)dpdp,
= —2D/(p(¢) - p(0)). (A.4)
Assuming a constant dispersion coefficient, the solution of this equation is given by
(p(1) - p(0)) = exp(—2D;1). (A.5)

This solution is general to large orientation dispersion and demonstrates how the fibre orientation
correlation decreases exponentially with time. It also shows that fibres with a small orientation
dispersion coefficient, i.c., fibres longer than the length scale of the turbulence, disperse slowly.
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